3.501 \(\int (a+b \sin ^2(e+f x))^{3/2} \tan (e+f x) \, dx\)

Optimal. Leaf size=84 \[ -\frac {(a+b) \sqrt {a+b \sin ^2(e+f x)}}{f}-\frac {\left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 f}+\frac {(a+b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \sin ^2(e+f x)}}{\sqrt {a+b}}\right )}{f} \]

[Out]

(a+b)^(3/2)*arctanh((a+b*sin(f*x+e)^2)^(1/2)/(a+b)^(1/2))/f-1/3*(a+b*sin(f*x+e)^2)^(3/2)/f-(a+b)*(a+b*sin(f*x+
e)^2)^(1/2)/f

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 84, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3194, 50, 63, 208} \[ -\frac {(a+b) \sqrt {a+b \sin ^2(e+f x)}}{f}-\frac {\left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 f}+\frac {(a+b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \sin ^2(e+f x)}}{\sqrt {a+b}}\right )}{f} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sin[e + f*x]^2)^(3/2)*Tan[e + f*x],x]

[Out]

((a + b)^(3/2)*ArcTanh[Sqrt[a + b*Sin[e + f*x]^2]/Sqrt[a + b]])/f - ((a + b)*Sqrt[a + b*Sin[e + f*x]^2])/f - (
a + b*Sin[e + f*x]^2)^(3/2)/(3*f)

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3194

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = Free
Factors[Sin[e + f*x]^2, x]}, Dist[ff^((m + 1)/2)/(2*f), Subst[Int[(x^((m - 1)/2)*(a + b*ff*x)^p)/(1 - ff*x)^((
m + 1)/2), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \left (a+b \sin ^2(e+f x)\right )^{3/2} \tan (e+f x) \, dx &=\frac {\operatorname {Subst}\left (\int \frac {(a+b x)^{3/2}}{1-x} \, dx,x,\sin ^2(e+f x)\right )}{2 f}\\ &=-\frac {\left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 f}+\frac {(a+b) \operatorname {Subst}\left (\int \frac {\sqrt {a+b x}}{1-x} \, dx,x,\sin ^2(e+f x)\right )}{2 f}\\ &=-\frac {(a+b) \sqrt {a+b \sin ^2(e+f x)}}{f}-\frac {\left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 f}+\frac {(a+b)^2 \operatorname {Subst}\left (\int \frac {1}{(1-x) \sqrt {a+b x}} \, dx,x,\sin ^2(e+f x)\right )}{2 f}\\ &=-\frac {(a+b) \sqrt {a+b \sin ^2(e+f x)}}{f}-\frac {\left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 f}+\frac {(a+b)^2 \operatorname {Subst}\left (\int \frac {1}{1+\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sin ^2(e+f x)}\right )}{b f}\\ &=\frac {(a+b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \sin ^2(e+f x)}}{\sqrt {a+b}}\right )}{f}-\frac {(a+b) \sqrt {a+b \sin ^2(e+f x)}}{f}-\frac {\left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.15, size = 79, normalized size = 0.94 \[ \frac {\sqrt {a-b \cos ^2(e+f x)+b} \left (b \cos ^2(e+f x)-4 (a+b)\right )+3 (a+b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a-b \cos ^2(e+f x)+b}}{\sqrt {a+b}}\right )}{3 f} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sin[e + f*x]^2)^(3/2)*Tan[e + f*x],x]

[Out]

(3*(a + b)^(3/2)*ArcTanh[Sqrt[a + b - b*Cos[e + f*x]^2]/Sqrt[a + b]] + Sqrt[a + b - b*Cos[e + f*x]^2]*(-4*(a +
 b) + b*Cos[e + f*x]^2))/(3*f)

________________________________________________________________________________________

fricas [A]  time = 0.81, size = 186, normalized size = 2.21 \[ \left [\frac {3 \, {\left (a + b\right )}^{\frac {3}{2}} \log \left (\frac {b \cos \left (f x + e\right )^{2} - 2 \, \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} \sqrt {a + b} - 2 \, a - 2 \, b}{\cos \left (f x + e\right )^{2}}\right ) + 2 \, {\left (b \cos \left (f x + e\right )^{2} - 4 \, a - 4 \, b\right )} \sqrt {-b \cos \left (f x + e\right )^{2} + a + b}}{6 \, f}, -\frac {3 \, {\left (a + b\right )} \sqrt {-a - b} \arctan \left (\frac {\sqrt {-b \cos \left (f x + e\right )^{2} + a + b} \sqrt {-a - b}}{a + b}\right ) - {\left (b \cos \left (f x + e\right )^{2} - 4 \, a - 4 \, b\right )} \sqrt {-b \cos \left (f x + e\right )^{2} + a + b}}{3 \, f}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e)^2)^(3/2)*tan(f*x+e),x, algorithm="fricas")

[Out]

[1/6*(3*(a + b)^(3/2)*log((b*cos(f*x + e)^2 - 2*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(a + b) - 2*a - 2*b)/cos(f
*x + e)^2) + 2*(b*cos(f*x + e)^2 - 4*a - 4*b)*sqrt(-b*cos(f*x + e)^2 + a + b))/f, -1/3*(3*(a + b)*sqrt(-a - b)
*arctan(sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(-a - b)/(a + b)) - (b*cos(f*x + e)^2 - 4*a - 4*b)*sqrt(-b*cos(f*x
 + e)^2 + a + b))/f]

________________________________________________________________________________________

giac [B]  time = 0.88, size = 1338, normalized size = 15.93 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e)^2)^(3/2)*tan(f*x+e),x, algorithm="giac")

[Out]

-2/3*(3*(a^2 + 2*a*b + b^2)*arctan(-1/2*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*
tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a) - sqrt(a))/sqrt(-a - b))/sqrt(-a - b) - 2*(6*(sqrt(a)
*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e
)^2 + a))^5*a*b + 3*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)
^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^5*b^2 + 18*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)
^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^4*a^(3/2)*b + 21*(sqrt(a)*tan(1/2*f*x + 1/2
*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^4*sqrt(a
)*b^2 + 12*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*
tan(1/2*f*x + 1/2*e)^2 + a))^3*a^2*b + 54*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*
a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^3*a*b^2 + 40*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqr
t(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^3*b^3 - 12*(sqrt(a)
*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e
)^2 + a))^2*a^(5/2)*b + 18*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x +
 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^2*a^(3/2)*b^2 + 24*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1
/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^2*sqrt(a)*b^3 - 18*(sqrt(a)*
tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)
^2 + a))*a^3*b - 57*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)
^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))*a^2*b^2 + 24*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*
e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))*a*b^3 + 48*(sqrt(a)*tan(1/2*f*x + 1/2*e)^
2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))*b^4 - 6*a^(7
/2)*b - 39*a^(5/2)*b^2 - 88*a^(3/2)*b^3 - 48*sqrt(a)*b^4)/((sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*
x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^2 + 2*(sqrt(a)*tan(1/2*f*x + 1/2*
e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))*sqrt(a) +
 a + 4*b)^3)/f

________________________________________________________________________________________

maple [B]  time = 3.21, size = 423, normalized size = 5.04 \[ \frac {\sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}\, b \left (\cos ^{2}\left (f x +e \right )\right )}{3 f}-\frac {4 \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}\, a}{3 f}-\frac {4 b \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}}{3 f}+\frac {\ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}+2 b \sin \left (f x +e \right )+2 a}{\sin \left (f x +e \right )-1}\right ) a^{2}}{2 \sqrt {a +b}\, f}+\frac {\ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}+2 b \sin \left (f x +e \right )+2 a}{\sin \left (f x +e \right )-1}\right ) a b}{\sqrt {a +b}\, f}+\frac {\ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}+2 b \sin \left (f x +e \right )+2 a}{\sin \left (f x +e \right )-1}\right ) b^{2}}{2 \sqrt {a +b}\, f}+\frac {\ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}-2 b \sin \left (f x +e \right )+2 a}{1+\sin \left (f x +e \right )}\right ) a^{2}}{2 \sqrt {a +b}\, f}+\frac {\ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}-2 b \sin \left (f x +e \right )+2 a}{1+\sin \left (f x +e \right )}\right ) a b}{\sqrt {a +b}\, f}+\frac {\ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}-2 b \sin \left (f x +e \right )+2 a}{1+\sin \left (f x +e \right )}\right ) b^{2}}{2 \sqrt {a +b}\, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sin(f*x+e)^2)^(3/2)*tan(f*x+e),x)

[Out]

1/3/f*(a+b-b*cos(f*x+e)^2)^(1/2)*b*cos(f*x+e)^2-4/3/f*(a+b-b*cos(f*x+e)^2)^(1/2)*a-4/3/f*b*(a+b-b*cos(f*x+e)^2
)^(1/2)+1/2/(a+b)^(1/2)/f*ln(2/(sin(f*x+e)-1)*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*a^2+1/(
a+b)^(1/2)/f*ln(2/(sin(f*x+e)-1)*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*a*b+1/2/(a+b)^(1/2)/
f*ln(2/(sin(f*x+e)-1)*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*b^2+1/2/(a+b)^(1/2)/f*ln(2/(1+s
in(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))*a^2+1/(a+b)^(1/2)/f*ln(2/(1+sin(f*x+e))*((
a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))*a*b+1/2/(a+b)^(1/2)/f*ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*
(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))*b^2

________________________________________________________________________________________

maxima [B]  time = 0.46, size = 157, normalized size = 1.87 \[ -\frac {3 \, {\left (a + b\right )}^{\frac {3}{2}} \operatorname {arsinh}\left (\frac {b \sin \left (f x + e\right )}{\sqrt {a b} {\left (\sin \left (f x + e\right ) + 1\right )}} - \frac {a}{\sqrt {a b} {\left (\sin \left (f x + e\right ) + 1\right )}}\right ) - 3 \, {\left (a + b\right )}^{\frac {3}{2}} \operatorname {arsinh}\left (-\frac {b \sin \left (f x + e\right )}{\sqrt {a b} {\left (\sin \left (f x + e\right ) - 1\right )}} - \frac {a}{\sqrt {a b} {\left (\sin \left (f x + e\right ) - 1\right )}}\right ) + 2 \, {\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} + 6 \, \sqrt {b \sin \left (f x + e\right )^{2} + a} a + 6 \, \sqrt {b \sin \left (f x + e\right )^{2} + a} b}{6 \, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e)^2)^(3/2)*tan(f*x+e),x, algorithm="maxima")

[Out]

-1/6*(3*(a + b)^(3/2)*arcsinh(b*sin(f*x + e)/(sqrt(a*b)*(sin(f*x + e) + 1)) - a/(sqrt(a*b)*(sin(f*x + e) + 1))
) - 3*(a + b)^(3/2)*arcsinh(-b*sin(f*x + e)/(sqrt(a*b)*(sin(f*x + e) - 1)) - a/(sqrt(a*b)*(sin(f*x + e) - 1)))
 + 2*(b*sin(f*x + e)^2 + a)^(3/2) + 6*sqrt(b*sin(f*x + e)^2 + a)*a + 6*sqrt(b*sin(f*x + e)^2 + a)*b)/f

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \mathrm {tan}\left (e+f\,x\right )\,{\left (b\,{\sin \left (e+f\,x\right )}^2+a\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(e + f*x)*(a + b*sin(e + f*x)^2)^(3/2),x)

[Out]

int(tan(e + f*x)*(a + b*sin(e + f*x)^2)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a + b \sin ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}} \tan {\left (e + f x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e)**2)**(3/2)*tan(f*x+e),x)

[Out]

Integral((a + b*sin(e + f*x)**2)**(3/2)*tan(e + f*x), x)

________________________________________________________________________________________